Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 292
Filtrar
1.
J Virol ; 96(3): e0178521, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34818070

RESUMO

The persistence of cells latently infected with HIV-1, named the latent reservoir, is the major barrier to HIV-1 eradication, and the formation and maintenance of the latent reservoir might be exacerbated by activation of the immunoinhibitory pathway and dysfunction of CD8+ T cells during HIV-1 infection. Our previous findings demonstrated that prophylactic vaccination combined with PD-1 blockade generated distinct immune response profiles and conferred effective control of highly pathogenic SIVmac239 infection in rhesus macaques. However, to our surprise, herein we found that a therapeutic vaccination in combination with PD-1 blockade resulted in activation of the viral reservoir, faster viral rebound after treatment interruption, accelerated AIDS progression, and, ultimately, death in chronically SIV-infected macaques after antiretroviral therapy (ART) interruption. Our study further demonstrated that the SIV provirus was preferentially enriched in PD-1+CD4+ T cells due to their susceptibility to viral entry, potent proliferative ability, and inability to perform viral transcription. In addition, the viral latency was effectively reactivated upon PD-1 blockade. Together, these results suggest that PD-1 blockade may be a double-edged sword for HIV-1 immunotherapy and provide important insight toward the rational design of immunotherapy strategies for an HIV-1 cure. IMPORTANCE As it is one of the most challenging public health problems, there are no clinically effective cure strategies against HIV-1 infection. We demonstrated that prophylactic vaccination combined with PD-1 blockade generated distinct immune response profiles and conferred better control of highly pathogenic SIVmac239 infection in rhesus macaques. In the present study, to our surprise, PD-1 blockade during therapeutic vaccination accelerated the reactivation of latent reservoir and AIDS progression in chronically SIV-infected macaques after ART interruption. Our study further demonstrated that the latent SIV provirus was preferentially enriched in PD-1+CD4+ T cells because of its susceptibility to viral entry, inhibition of SIV transcription, and potent ability of proliferation, and the viral latency was effectively reactivated by PD-1 blockade. Therefore, PD-1 blockade might be a double-edged sword for AIDS therapy. These findings provoke interest in further exploring novel treatments against HIV-1 infection and other emerging infectious diseases.


Assuntos
Receptor de Morte Celular Programada 1/antagonistas & inibidores , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/imunologia , Animais , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Terapia Antirretroviral de Alta Atividade , Biópsia , Biologia Computacional , Progressão da Doença , Imuno-Histoquímica , Imunomodulação/efeitos dos fármacos , Macaca mulatta , Vacinas contra a SAIDS/administração & dosagem , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transcriptoma , Carga Viral , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
2.
Front Immunol ; 12: 625030, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046030

RESUMO

Human immunodeficiency virus type 1 (HIV-1) infection remains a major public health threat due to its incurable nature and the lack of a highly efficacious vaccine. The RV144 vaccine trial is the only clinical study to date that demonstrated significant but modest decrease in HIV infection risk. To improve HIV-1 vaccine immunogenicity and efficacy, we recently evaluated pox-protein vaccination using a next generation liposome-based adjuvant, Army Liposomal Formulation adsorbed to aluminum (ALFA), in rhesus monkeys and observed 90% efficacy against limiting dose mucosal SHIV challenge in male animals. Here, we analyzed binding antibody responses, as assessed by Fc array profiling using a broad range of HIV-1 envelope antigens and Fc features, to explore the mechanisms of ALFA-mediated protection by employing machine learning and Cox proportional hazards regression analyses. We found that Fcγ receptor 2a-related binding antibody responses were augmented by ALFA relative to aluminium hydroxide, and these responses were associated with reduced risk of infection in male animals. Our results highlight the application of systems serology to provide mechanistic insights to vaccine-elicited protection and support evidence that antibody effector responses protect against HIV-1 infection.


Assuntos
Vacinas contra a AIDS/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Imunogenicidade da Vacina , Vacinas contra a SAIDS/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Vacinas contra a AIDS/imunologia , Animais , Feminino , Anticorpos Anti-HIV/sangue , Infecções por HIV/imunologia , Infecções por HIV/virologia , Macaca mulatta , Masculino , Receptores de IgG/imunologia , Vacinas contra a SAIDS/imunologia , Fatores Sexuais , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vacinação
3.
Viruses ; 13(3)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801437

RESUMO

Rhesus macaques can be readily infected with chimeric simian-human immunodeficiency viruses (SHIV) as a suitable virus challenge system for testing the efficacy of HIV vaccines. Three Chinese-origin rhesus macaques (ChRM) were inoculated intravenously (IV) with SHIVC109P4 in a rapid serial in vivo passage. SHIV recovered from the peripheral blood of the final ChRM was used to generate a ChRM-adapted virus challenge stock. This stock was titrated for the intrarectal route (IR) in 8 ChRMs using undiluted, 1:10 or 1:100 dilutions, to determine a suitable dose for use in future vaccine efficacy testing via repeated low-dose IR challenges. All 11 ChRMs were successfully infected, reaching similar median peak viraemias at 1-2 weeks post inoculation but undetectable levels by 8 weeks post inoculation. T-cell responses were detected in all animals and Tier 1 neutralizing antibodies (Nab) developed in 10 of 11 infected ChRMs. All ChRMs remained healthy and maintained normal CD4+ T cell counts. Sequence analyses showed >98% amino acid identity between the original inoculum and virus recovered at peak viraemia indicating only minimal changes in the env gene. Thus, while replication is limited over time, our adapted SHIV can be used to test for protection of virus acquisition in ChRMs.


Assuntos
Vacinas contra a SAIDS/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia/imunologia , Animais , Linhagem Celular , Humanos , Macaca mulatta , Inoculações Seriadas , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Carga Viral , Replicação Viral
4.
PLoS Pathog ; 16(10): e1008954, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33104758

RESUMO

Globally, 1.8 million children are living with HIV-1. While antiretroviral therapy (ART) has improved disease outcomes, it does not eliminate the latent HIV-1 reservoir. Interventions to delay or prevent viral rebound in the absence of ART would be highly beneficial for HIV-1-infected children who now must remain on daily ART throughout their lifespan. Here, we evaluated therapeutic Ad48-SIV prime, MVA-SIV boost immunization in combination with the TLR-7 agonist GS-986 in rhesus macaque (RM) infants orally infected with SIVmac251 at 4 weeks of age and treated with a triple ART regimen beginning 4 weeks after infection. We hypothesized immunization would enhance SIV-specific T cell responses during ART-mediated suppression of viremia. Compared to controls, vaccinated infants had greater magnitude SIV-specific T cell responses (mean of 3475 vs 69 IFN-γ spot forming cells (SFC) per 106 PBMCs, respectively, P = 0.01) with enhanced breadth of epitope recognition and increased CD8+ and CD4+ T cell polyfunctionality (P = 0.004 and P = 0.005, respectively). Additionally, SIV-specific gp120 antibodies against challenge and vaccine virus strains were significantly elevated following MVA boost (P = 0.02 and P < 0.001, respectively). GS-986 led to expected immune stimulation demonstrated by activation of monocytes and T cells 24 hours post-dose. Despite the vaccine-induced immune responses, levels of SIV DNA in peripheral and lymph node CD4+ T cells were not significantly different from controls and a similar time to viral rebound and viral load set point were observed following ART interruption in both groups. We demonstrate infant RMs mount a robust immunological response to this immunization, but vaccination alone was not sufficient to impact viral reservoir size or modulate rebound dynamics following ART release. Our findings hold promise for therapeutic vaccination as a part of a combination cure approach in children and highlight the importance of a pediatric model to evaluate HIV-1 cure interventions in this unique setting of immune development.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Vacinas contra a SAIDS/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/imunologia , Receptor 7 Toll-Like/agonistas , Vacinação/métodos , Viremia/tratamento farmacológico , Adenoviridae/genética , Animais , Animais Recém-Nascidos , Linfócitos T CD4-Positivos/virologia , Feminino , Vetores Genéticos , Macaca mulatta , Masculino , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Carga Viral , Viremia/imunologia , Viremia/virologia , Replicação Viral
5.
Front Immunol ; 11: 1935, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983121

RESUMO

Studies have shown that vaccine vectors and route of immunization can differentially activate different arms of the immune system. However, the effects of different HIV vaccine immunogens on mucosal inflammation have not yet been studied. Because mucosal sites are the primary route of HIV infection, we evaluated the cervico-vaginal inflammatory cytokine and chemokine levels of Mauritian cynomolgus macaques following immunization and boost using two different SIV vaccine immunogens. The PCS vaccine delivers 12 20-amino acid peptides overlapping the 12 protease cleavage sites, and the Gag/Env vaccine delivers the full Gag and full Env proteins of simian immunodeficiency virus. We showed that the PCS vaccine prime and boosts induced short-lived, lower level increases of a few pro-inflammatory/chemotactic cytokines. In the PCS-vaccine group only the levels of MCP-1 were significantly increased above the baseline (P = 0.0078, Week 6; P = 0.0078, Week 17; P = 0.0234; Week 51) following multiple boosts. In contrast, immunizations with the Gag/Env vaccine persistently increased the levels of multiple cytokines/chemokines. In the Gag/Env group, higher than baseline levels were consistently observed for IL-8 (P = 0.0078, Week 16; P = 0.0078, Week 17; P = 0.0156, Week 52), IL-1ß (P = 0.0234, Week 16; P = 0.0156, Week 17; P = 0.0156, Week 52), and MIP-1α (P = 0.0313, Week 16; P = 0.0156, Week 17; P = 0.0313, Week 52). Over time, repeated boosts altered the relative levels of these cytokines between the Gag/Env and PCS vaccine group. 18 weeks after final boost with a higher dosage, IP-10 levels (P = 0.0313) in the Gag/Env group remained higher than baseline. Thus, the influence of vaccine immunogens on mucosal inflammation needs to be considered when developing and evaluating candidate HIV vaccines.


Assuntos
Colo do Útero/efeitos dos fármacos , Citocinas/metabolismo , Produtos do Gene env/administração & dosagem , Produtos do Gene gag/administração & dosagem , Mediadores da Inflamação/metabolismo , Vacinas contra a SAIDS/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Vagina/efeitos dos fármacos , Animais , Colo do Útero/imunologia , Colo do Útero/metabolismo , Feminino , Produtos do Gene env/genética , Produtos do Gene env/imunologia , Produtos do Gene env/toxicidade , Produtos do Gene gag/genética , Produtos do Gene gag/imunologia , Produtos do Gene gag/toxicidade , Macaca fascicularis , Mucosa/efeitos dos fármacos , Mucosa/imunologia , Mucosa/metabolismo , Vacinas contra a SAIDS/genética , Vacinas contra a SAIDS/imunologia , Vacinas contra a SAIDS/toxicidade , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Fatores de Tempo , Vacinação , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/toxicidade , Vagina/imunologia , Vagina/metabolismo
6.
Sci Rep ; 10(1): 11394, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647227

RESUMO

Anti-retroviral therapy (ART) can inhibit HIV proliferation but not achieve virus eradication from HIV-infected individuals. Under ART-based HIV control, virus-specific CD8+ T-cell responses are often reduced. Here, we investigated the impact of therapeutic vaccination inducing virus-specific CD8+ T-cell responses under ART on viral control in a macaque AIDS model. Twelve rhesus macaques received ART from week 12 to 32 after simian immunodeficiency virus (SIV) infection. Six of them were vaccinated with Sendai virus vectors expressing SIV Gag and Vif at weeks 26 and 32, and Gag/Vif-specific CD8+ T-cell responses were enhanced and became predominant. All macaques controlled viremia during ART but showed viremia rebound after ART cessation. Analysis of in vitro CD8+ cell ability to suppress replication of autologous lymphocytes-derived SIVs found augmentation of anti-SIV efficacy of CD8+ cells after vaccination. In the vaccinated animals, the anti-SIV efficacy of CD8+ cells at week 34 was correlated positively with Gag-specific CD8+ T-cell frequencies and inversely with rebound viral loads at week 34. These results indicate that Gag-specific CD8+ T-cell induction by therapeutic vaccination can augment anti-virus efficacy of CD8+ cells, which may be insufficient for functional cure but contribute to more stable viral control under ART.


Assuntos
Síndrome de Imunodeficiência Adquirida/terapia , Antirretrovirais/farmacologia , Linfócitos T CD8-Positivos/imunologia , Vacinas contra a SAIDS/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/terapia , Síndrome de Imunodeficiência Adquirida/imunologia , Síndrome de Imunodeficiência Adquirida/virologia , Animais , Antirretrovirais/uso terapêutico , Linfócitos T CD8-Positivos/efeitos dos fármacos , Modelos Animais de Doenças , Produtos do Gene gag/imunologia , Produtos do Gene vif/imunologia , Humanos , Imunogenicidade da Vacina , Macaca mulatta , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Carga Viral/efeitos dos fármacos , Carga Viral/imunologia
7.
PLoS One ; 15(3): e0228163, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32130229

RESUMO

Anti-retroviral therapy (ART) has been highly successful in controlling HIV replication, reducing viral burden, and preventing both progression to AIDS and viral transmission. Yet, ART alone cannot cure the infection. Even after years of successful therapy, ART withdrawal leads inevitably to viral rebound within a few weeks or months. Our hypothesis: effective therapy must control both the replicating virus pool and the reactivatable latent viral reservoir. To do this, we have combined ART and immunotherapy to attack both viral pools simultaneously. The vaccine regimen consisted of DNA vaccine expressing SIV Gag, followed by a boost with live attenuated rubella/gag vectors. The vectors grow well in rhesus macaques, and they are potent immunogens when used in a prime and boost strategy. We infected rhesus macaques by high dose mucosal challenge with virulent SIVmac251 and waited three days to allow viral dissemination and establishment of a reactivatable viral reservoir before starting ART. While on ART, the control group received control DNA and empty rubella vaccine, while the immunotherapy group received DNA/gag prime, followed by boosts with rubella vectors expressing SIV gag over 27 weeks. Both groups had a vaccine "take" to rubella, and the vaccine group developed antibodies and T cells specific for Gag. Five weeks after the last immunization, we stopped ART and monitored virus rebound. All four control animals eventually had a viral rebound, and two were euthanized for AIDS. One control macaque did not rebound until 2 years after ART release. In contrast, there was only one viral rebound in the vaccine group. Three out of four vaccinees had no viral rebound, even after CD8 depletion, and they remain in drug-free viral remission more than 2.5 years later. The strategy of early ART combined with immunotherapy can produce a sustained SIV remission in macaques and may be relevant for immunotherapy of HIV in humans.


Assuntos
Síndrome de Imunodeficiência Adquirida/terapia , Fármacos Anti-HIV/uso terapêutico , Vacinas contra a SAIDS/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/terapia , Vírus da Imunodeficiência Símia/imunologia , Síndrome de Imunodeficiência Adquirida/sangue , Síndrome de Imunodeficiência Adquirida/imunologia , Síndrome de Imunodeficiência Adquirida/virologia , Animais , Terapia Combinada/métodos , Modelos Animais de Doenças , Esquema de Medicação , Quimioterapia Combinada/métodos , Produtos do Gene gag/genética , Produtos do Gene gag/imunologia , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Macaca mulatta , Plasmídeos/administração & dosagem , Plasmídeos/genética , Vírus da Rubéola/imunologia , Vacinas contra a SAIDS/genética , Síndrome de Imunodeficiência Adquirida dos Símios/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/isolamento & purificação , Fatores de Tempo , Resultado do Tratamento , Vacinas Atenuadas/administração & dosagem , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Latência Viral/efeitos dos fármacos , Latência Viral/imunologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/imunologia
8.
J Infect Dis ; 222(1): 44-53, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-31605528

RESUMO

BCG vaccination has been demonstrated to increase levels of activated CD4+ T cells, thus potentially influencing mother-to-child transmission of human immunodeficiency virus (HIV). To assess the risk of BCG vaccination in HIV infection, we randomly assigned newborn rhesus macaques to receive BCG vaccine or remain unvaccinated and then undergo oral simian immunodeficiency virus (SIV) challenges 3 weeks later. We observed elevated levels of activated peripheral CD4+ T cells (ie, HLA-DR+CD38+CCR5+ CD4+ T cells) by week 3 after vaccination. BCG was also associated with an altered immune gene expression profile, as well as with monocyte activation in both peripheral blood and the draining axillary lymph node, indicating significant BCG vaccine-induced immune activation. Despite these effects, BCG vaccination did not increase the rate of SIV oral transmission or disease progression. Our findings therefore identify patterns of T-cell and monocyte activation that occur after BCG vaccination but do not support the hypothesis that BCG vaccination is a risk factor for postnatal HIV transmission or increased pathogenesis in infants.


Assuntos
Imunidade Ativa/efeitos dos fármacos , Macaca mulatta/imunologia , Retrovirus dos Símios/efeitos dos fármacos , Retrovirus dos Símios/imunologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Animais , Feminino , Masculino , Modelos Animais , Vacinas contra a SAIDS/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/fisiopatologia , Vacinação/métodos
9.
Front Immunol ; 11: 608003, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584682

RESUMO

T follicular helper (TFH) cells are pivotal in lymph node (LN) germinal center (GC) B cell affinity maturation. Circulating CXCR5+ CD4+ T (cTFH) cells have supported memory B cell activation and broadly neutralizing antibodies in HIV controllers. We investigated the contribution of LN SIV-specific TFH and cTFH cells to Env-specific humoral immunity in female rhesus macaques following a mucosal Ad5hr-SIV recombinant priming and SIV gp120 intramuscular boosting vaccine regimen and following SIV vaginal challenge. TFH and B cells were characterized by flow cytometry. B cell help was evaluated in TFH-B cell co-cultures and by real-time PCR. Vaccination induced Env-specific TFH and Env-specific memory (ESM) B cells in LNs. LN Env-specific TFH cells post-priming and GC ESM B cells post-boosting correlated with rectal Env-specific IgA titers, and GC B cells at the same timepoints correlated with vaginal Env-specific IgG titers. Vaccination expanded cTFH cell responses, including CD25+ Env-specific cTFH cells that correlated negatively with vaginal Env-specific IgG titers but positively with rectal Env-specific IgA titers. Although cTFH cells post-2nd boost positively correlated with viral-loads following SIV challenge, cTFH cells of SIV-infected and protected macaques supported maturation of circulating B cells into plasma cells and IgA release in co-culture. Additionally, cTFH cells of naïve macaques promoted upregulation of genes associated with B cell proliferation, BCR engagement, plasma cell maturation, and antibody production, highlighting the role of cTFH cells in blood B cell maturation. Vaccine-induced LN TFH and GC B cells supported anti-viral mucosal immunity while cTFH cells provided B cell help in the periphery during immunization and after SIV challenge. Induction of TFH responses in blood and secondary lymphoid organs is likely desirable for protective efficacy of HIV vaccines.


Assuntos
Imunidade Humoral , Imunidade nas Mucosas , Imunogenicidade da Vacina , Glicoproteínas de Membrana/administração & dosagem , Vacinas contra a SAIDS/administração & dosagem , Vírus da Imunodeficiência Símia/imunologia , Células T Auxiliares Foliculares/imunologia , Vacinação , Proteínas do Envelope Viral/administração & dosagem , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos B/virologia , Células Cultivadas , Técnicas de Cocultura , Feminino , Memória Imunológica , Macaca mulatta , Glicoproteínas de Membrana/imunologia , Reto , Vacinas contra a SAIDS/imunologia , Células T Auxiliares Foliculares/metabolismo , Células T Auxiliares Foliculares/virologia , Vagina , Proteínas do Envelope Viral/imunologia
10.
PLoS Pathog ; 15(9): e1008015, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31568531

RESUMO

A prophylactic vaccine against human immunodeficiency virus (HIV) remains a top priority in biomedical research. Given the failure of conventional immunization protocols to confer robust protection against HIV, new and unconventional approaches may be needed to generate protective anti-HIV immunity. Here we vaccinated rhesus macaques (RMs) with a recombinant (r)DNA prime (without any exogenous adjuvant), followed by a booster with rhesus monkey rhadinovirus (RRV)-a herpesvirus that establishes persistent infection in RMs (Group 1). Both the rDNA and rRRV vectors encoded a near-full-length simian immunodeficiency virus (SIVnfl) genome that assembles noninfectious SIV particles and expresses all nine SIV gene products. This rDNA/rRRV-SIVnfl vaccine regimen induced persistent anti-Env antibodies and CD8+ T-cell responses against the entire SIV proteome. Vaccine efficacy was assessed by repeated, marginal-dose, intrarectal challenges with SIVmac239. Encouragingly, vaccinees in Group 1 acquired SIVmac239 infection at a significantly delayed rate compared to unvaccinated controls (Group 3). In an attempt to improve upon this outcome, a separate group of rDNA/rRRV-SIVnfl-vaccinated RMs (Group 2) was treated with a cytotoxic T-lymphocyte antigen-4 (CTLA-4)-blocking monoclonal antibody during the vaccine phase and then challenged in parallel with Groups 1 and 3. Surprisingly, Group 2 was not significantly protected against SIVmac239 infection. In sum, SIVnfl vaccination can protect RMs against rigorous mucosal challenges with SIVmac239, a feat that until now had only been accomplished by live-attenuated strains of SIV. Further work is needed to identify the minimal requirements for this protection and whether SIVnfl vaccine efficacy can be improved by means other than anti-CTLA-4 adjuvant therapy.


Assuntos
Vacinas contra a SAIDS/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Animais , Anticorpos Antivirais/metabolismo , Especificidade de Anticorpos , Linfócitos T CD8-Positivos/imunologia , Antígeno CTLA-4/antagonistas & inibidores , Feminino , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Esquemas de Imunização , Imunização Secundária , Macaca mulatta , Masculino , Reto/imunologia , Reto/virologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/patogenicidade , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
11.
J Virol ; 93(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31413132

RESUMO

Vaccines aimed at inducing T cell responses to protect against human immunodeficiency virus (HIV) infection have been under development for more than 15 years. Replication-defective adenovirus (rAd) vaccine vectors are at the forefront of this work and have been tested extensively in the simian immunodeficiency virus (SIV) challenge macaque model. Vaccination with rAd vectors coding for SIV Gag or other nonenvelope proteins induces T cell responses that control virus load but disappointingly is unsuccessful so far in preventing infection, and attention has turned to inducing antibodies to the envelope. However, here we report that Mauritian cynomolgus macaques (MCM), Macaca fascicularis, vaccinated with unmodified SIV gag alone in a DNA prime followed by an rAd boost exhibit increased protection from infection by repeated intrarectal challenge with low-dose SIVmac251. There was no evidence of infection followed by eradication. A significant correlation was observed between cytokine expression by CD4 T cells and delayed infection. Vaccination with gag fused to the ubiquitin gene or fragmented, designed to increase CD8 magnitude and breadth, did not confer resistance to challenge or enhance immunity. On infection, a significant reduction in peak virus load was observed in all vaccinated animals, including those vaccinated with modified gag These findings suggest that a nonpersistent viral vector vaccine coding for internal virus proteins may be able to protect against HIV type 1 (HIV-1) infection. The mechanisms are probably distinct from those of antibody-mediated virus neutralization or cytotoxic CD8 cell killing of virus-infected cells and may be mediated in part by CD4 T cells.IMPORTANCE The simian immunodeficiency virus (SIV) macaque model represents the best animal model for testing new human immunodeficiency virus type 1 (HIV-1) vaccines. Previous studies employing replication-defective adenovirus (rAd) vectors that transiently express SIV internal proteins induced T cell responses that controlled virus load but did not protect against virus challenge. However, we show for the first time that SIV gag delivered in a DNA prime followed by a boost with an rAd vector confers resistance to SIV intrarectal challenge. Other partially successful SIV/HIV-1 protective vaccines induce antibody to the envelope and neutralize the virus or mediate antibody-dependent cytotoxicity. Induction of CD8 T cells which do not prevent initial infection but eradicate infected cells before infection becomes established has also shown some success. In contrast, the vaccine described here mediates resistance by a different mechanism from that described above, which may reflect CD4 T cell activity. This could indicate an alternative approach for HIV-1 vaccine development.


Assuntos
Produtos do Gene gag/imunologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Adenoviridae/genética , Adenoviridae/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vírus Defeituosos/genética , Vírus Defeituosos/imunologia , Produtos do Gene gag/genética , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Macaca fascicularis , Masculino , Vacinas contra a SAIDS/administração & dosagem , Vacinas contra a SAIDS/genética , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Vacinação , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Carga Viral
12.
J Virol ; 93(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31315990

RESUMO

Major histocompatibility complex E (MHC-E) is a highly conserved nonclassical MHC-Ib molecule that tightly binds peptides derived from leader sequences of classical MHC-Ia molecules for presentation to natural killer cells. However, MHC-E also binds diverse foreign and neoplastic self-peptide antigens for presentation to CD8+ T cells. Although the determinants of MHC-E-restricted T cell priming remain unknown, these cells are induced in humans infected with pathogens containing genes that inhibit the transporter associated with antigen processing (TAP). Indeed, mice vaccinated with TAP-inhibited autologous dendritic cells develop T cells restricted by the murine MHC-E homologue, Qa-1b. Here, we tested whether rhesus macaques (RM) vaccinated with viral constructs expressing a TAP inhibitor would develop insert-specific MHC-E-restricted CD8+ T cells. We generated viral constructs coexpressing SIVmac239 Gag in addition to one of three TAP inhibitors: herpes simplex virus 2 ICP47, bovine herpes virus 1 UL49.5, or rhesus cytomegalovirus Rh185. Each TAP inhibitor reduced surface expression of MHC-Ia molecules but did not reduce surface MHC-E expression. In agreement with modulation of surface MHC-Ia levels, TAP inhibition diminished presentation of MHC-Ia-restricted CD8+ T cell epitopes without impacting presentation of peptide antigen bound by MHC-E. Vaccination of macaques with vectors dually expressing SIVmac239 Gag with ICP47, UL49.5, or Rh185 generated Gag-specific CD8+ T cells classically restricted by MHC-Ia but not MHC-E. These data demonstrate that, in contrast to results in mice, TAP inhibition alone is insufficient for priming of MHC-E-restricted T cell responses in primates and suggest that additional unknown mechanisms govern the induction of CD8+ T cells recognizing MHC-E-bound antigen.IMPORTANCE Due to the near monomorphic nature of MHC-E in the human population and inability of many pathogens to inhibit MHC-E-mediated peptide presentation, MHC-E-restricted T cells have become an attractive vaccine target. However, little is known concerning how these cells are induced. Understanding the underlying mechanisms that induce these T cells would provide a powerful new vaccine strategy to an array of neoplasms and viral and bacterial pathogens. Recent studies have indicated a link between TAP inhibition and induction of MHC-E-restricted T cells. The significance of our research is in demonstrating that TAP inhibition alone does not prime MHC-E-restricted T cell generation and suggests that other, currently unknown mechanisms regulate their induction.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Vacinas contra a SAIDS/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Inibidores Enzimáticos/metabolismo , Macaca mulatta , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vacinas contra a SAIDS/administração & dosagem , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
13.
Front Immunol ; 10: 779, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031768

RESUMO

Inducing strong mucosal immune responses by vaccination is important for providing protection against simian immunodeficiency virus (SIV). A replicating adenovirus type 5 host range mutant vector (Ad5hr) expressing SIV proteins induced mucosal immune responses in rectal tissue associated with delayed SIV acquisition in female rhesus macaques, but the initial mechanisms leading to the induced immunity have not been elucidated. As dendritic cells (DCs) are known to orchestrate both innate and adaptive effector immune cell responses, we investigated their role here. Rhesus macaques were immunized twice mucosally with a replicating Ad5hr expressing SIV Env, Gag, and Nef (Ad-SIV) or empty Ad5hr vector (Ad-Empty). DC subsets and their activation were examined in rectal tissue, blood, and LNs at 3 timepoints after each immunization. Plasmacytoid DCs, myeloid DCs, and Langerhans cells were significantly increased in the rectal mucosa, but only myeloid DCs were significantly increased in blood post-immunizations. All rectal DC subsets showed increased frequencies of cells expressing activation markers and cytokines post-immunization, blood DCs showed mixed results, and LN DCs showed few changes. Rectal DCs responded strongly to the vector rather than expressed SIV antigens, but rectal DC frequencies positively correlated with induced rectal antigen-specific memory T and B cells. These correlations were confirmed by in vitro co-cultures showing that rectal Ad-SIV DCs induced proliferation and antigen-specific cytokine production by autologous naïve T cells. Our results highlight the rapid response of DCs to Ad immunization and their role in mucosal immune activation and identify initial cellular mechanisms of the replicating Ad-SIV vaccine in the rhesus macaque model.


Assuntos
Adenovírus Humanos , Células Dendríticas/imunologia , Imunidade nas Mucosas , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Adenovírus Humanos/genética , Adenovírus Humanos/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Citocinas/metabolismo , Feminino , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Humanos , Imunização , Esquemas de Imunização , Macaca mulatta , Mucosa/imunologia , Mucosa/metabolismo , Vacinas contra a SAIDS/administração & dosagem , Vacinas contra a SAIDS/genética , Vírus da Imunodeficiência Símia/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo
14.
Sci Rep ; 9(1): 4834, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886198

RESUMO

The complexity of immune responses limits the usefulness of univariate methods in answering complex immunology questions. To demonstrate the utility of a multivariate approach, we employ such approach to compare T cells of African green monkeys (AGMs) and rhesus macaques (RMs). Among the most prominent distinguishing features we found were lower CD3 and higher CD28 surface expression in AGMs compared to RMs. After in vitro stimulation, a larger proportion of AGM T cells secreted cytokines, especially those producing more than one cytokine (i.e. multifunctional cells). To find out whether multifunctional responses associate with protection in other species, we compared T cells of cynomolgus macaques (CMs) infected with wild-type Simian Immunodeficiency Virus (SIV) to those of CMs infected (vaccinated) with a replication-defective virus. Wild-type SIV infection in macaques leads to simian Acquired Immunodeficiency Syndrome (AIDS), which does not happen in animals previously vaccinated with a replication-defective virus. Interestingly, after in vitro stimulation, multifunctional cells were more abundant among T cells of vaccinated CMs. Our results propose T-cell multifunctionality as a potentially useful marker of immunity, although additional verification is needed. Finally, we hope our multivariate model and its associated validation methods will inform future studies in the field of immunology.


Assuntos
Técnicas Imunológicas/métodos , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T/imunologia , Animais , Antígenos CD28/metabolismo , Complexo CD3/metabolismo , Chlorocebus aethiops/imunologia , Chlorocebus aethiops/virologia , Citocinas/imunologia , Citocinas/metabolismo , Imunogenicidade da Vacina , Contagem de Linfócitos , Macaca mulatta/imunologia , Macaca mulatta/virologia , Vacinas contra a SAIDS/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/patogenicidade , Especificidade da Espécie , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Replicação Viral/genética , Replicação Viral/imunologia
15.
J Virol ; 92(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30021899

RESUMO

An effective human immunodeficiency virus (HIV) vaccine has yet to be developed, and defining immune correlates of protection against HIV infection is of paramount importance to inform future vaccine design. The complement system is a component of innate immunity that can directly lyse pathogens and shape adaptive immunity. To determine if complement lysis of simian immunodeficiency virus (SIV) and/or SIV-infected cells represents a protective immune correlate against SIV infection, sera from previously vaccinated and challenged rhesus macaques were analyzed for the induction of antibody-dependent complement-mediated lysis (ADCML). Importantly, the vaccine regimen, consisting of a replication-competent adenovirus type 5 host-range mutant SIV recombinant prime followed by a monomeric gp120 or oligomeric gp140 boost, resulted in overall delayed SIV acquisition only in females. Here, sera from all vaccinated animals induced ADCML of SIV and SIV-infected cells efficiently, regardless of sex. A modest correlation of SIV lysis with a reduced infection rate in males but not females, together with a reduced peak viremia in all animals boosted with gp140, suggested a potential for influencing protective efficacy. Gag-specific IgG and gp120-specific IgG and IgM correlated with SIV lysis in females, while Env-specific IgM correlated with SIV-infected cell lysis in males, indicating sex differences in vaccine-induced antibody characteristics and function. In fact, gp120/gp140-specific antibody functional correlates between antibody-dependent cellular cytotoxicity, antibody-dependent phagocytosis, and ADCML as well as the gp120-specific IgG glycan profiles and the corresponding ADCML correlations varied depending on the sex of the vaccinees. Overall, these data suggest that sex influences vaccine-induced antibody function, which should be considered in the design of globally effective HIV vaccines in the future.IMPORTANCE An HIV vaccine would thwart the spread of HIV infection and save millions of lives. Unfortunately, the immune responses conferring universal protection from HIV infection are poorly defined. The innate immune system, including the complement system, is an evolutionarily conserved, basic means of protection from infection. Complement can prevent infection by directly lysing incoming pathogens. We found that vaccination against SIV in rhesus macaques induces antibodies that are capable of directing complement lysis of SIV and SIV-infected cells in both sexes. We also found sex differences in vaccine-induced antibody species and their functions. Overall, our data suggest that sex affects vaccine-induced antibody characteristics and function and that males and females might require different immune responses to protect against HIV infection. This information could be used to generate highly effective HIV vaccines for both sexes in the future.


Assuntos
Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Proteínas do Sistema Complemento/imunologia , Vacinas contra a SAIDS/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Adenovirus dos Símios/genética , Adenovirus dos Símios/imunologia , Animais , Proteínas do Sistema Complemento/agonistas , Proteínas do Sistema Complemento/genética , Citotoxicidade Imunológica , Feminino , Regulação da Expressão Gênica , Produtos do Gene env/administração & dosagem , Produtos do Gene env/genética , Produtos do Gene env/imunologia , Soros Imunes/química , Imunização Secundária/métodos , Imunoglobulina G/biossíntese , Imunoglobulina M/biossíntese , Macaca mulatta , Masculino , Glicoproteínas de Membrana/administração & dosagem , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Vacinas contra a SAIDS/genética , Vacinas contra a SAIDS/imunologia , Fatores Sexuais , Transdução de Sinais , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Vacinas Sintéticas , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
16.
Hum Vaccin Immunother ; 14(9): 2163-2177, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29939820

RESUMO

HIV sequence diversity and the propensity of eliciting immunodominant responses targeting inessential variable regions are hurdles in the development of an effective AIDS vaccine. We developed a DNA vaccine comprising conserved elements (CE) of SIV p27Gag and HIV-1 Env and found that priming vaccination with CE DNA is critical to efficiently overcome the dominance imposed by Gag and Env variable regions. Here, we show that DNA vaccinated macaques receiving the CE prime/CE+full-length DNA co-delivery booster vaccine regimens developed broad, potent and durable cytotoxic T cell responses targeting conserved protein segments of SIV Gag and HIV Env. Gag CE-specific T cells showed robust anamnestic responses upon infection with SIVmac239 which led to the identification of CE-specific cytotoxic lymphocytes able to recognize epitopes covering distinct CE on the surface of SIV infected cells in vivo. Though not controlling infection overall, we found an inverse correlation between Gag CE-specific CD8+ T cell responses and peak viremia. The T cell responses induced by the HIV Env CE immunogen were recalled in some animals upon SIV infection, leading to the identification of two cross-reactive epitopes between HIV and SIV Env based in sequence homology. These data demonstrate that a vaccine combining Gag and Env CE DNA subverted the normal immunodominance patterns, eliciting immune responses that included subdominant, highly conserved epitopes. These vaccine regimens augment cytotoxic T cell responses to highly conserved epitopes in the viral proteome and maximize response breadth. The vaccine-induced CE-specific T cells were expanded upon SIV infection, indicating that the predicted CE epitopes incorporated in the DNA vaccine are processed and exposed by infected cells in their natural context within the viral proteome.


Assuntos
Vacinas contra a AIDS/imunologia , Epitopos de Linfócito T/imunologia , Produtos do Gene env/imunologia , Produtos do Gene gag/imunologia , Vacinas contra a SAIDS/imunologia , Linfócitos T Citotóxicos/imunologia , Vacinas de DNA/imunologia , Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/genética , Animais , Sequência Conservada , Produtos do Gene env/genética , Produtos do Gene gag/genética , Esquemas de Imunização , Macaca , Masculino , Vacinas contra a SAIDS/administração & dosagem , Vacinas contra a SAIDS/genética , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Viremia/prevenção & controle
17.
J Virol ; 92(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29875239

RESUMO

Certain major histocompatibility complex class I (MHC-I) alleles are associated with spontaneous control of viral replication in human immunodeficiency virus (HIV)-infected people and simian immunodeficiency virus (SIV)-infected rhesus macaques (RMs). These cases of "elite" control of HIV/SIV replication are often immune-mediated, thereby providing a framework for studying anti-lentiviral immunity. In this study, we examined how vaccination impacts SIV replication in RMs expressing the MHC-I allele Mamu-B*17 Approximately 21% of Mamu-B*17+ and 50% of Mamu-B*08+ RMs control chronic-phase viremia after SIVmac239 infection. Because CD8+ T cells targeting Mamu-B*08-restricted SIV epitopes have been implicated in virologic suppression in Mamu-B*08+ RMs, we investigated whether this might also be true for Mamu-B*17+ RMs. Two groups of Mamu-B*17+ RMs were vaccinated with genes encoding Mamu-B*17-restricted epitopes in Vif and Nef. These genes were delivered by themselves (group 1) or together with env (group 2). Group 3 included MHC-I-matched RMs and served as the control group. Surprisingly, the group 1 vaccine regimen had little effect on viral replication compared to group 3, suggesting that unlike Mamu-B*08+ RMs, preexisting SIV-specific CD8+ T cells alone do not facilitate long-term virologic suppression in Mamu-B*17+ RMs. Remarkably, however, 5/8 group 2 vaccinees controlled viremia to <15 viral RNA copies/ml soon after infection. No serological neutralizing activity against SIVmac239 was detected in group 2, although vaccine-elicited gp140-binding antibodies correlated inversely with nadir viral loads. Collectively, these data shed new light on the unique mechanism of elite control in Mamu-B*17+ RMs and implicate vaccine-induced, nonneutralizing anti-Env antibodies in the containment of immunodeficiency virus infection.IMPORTANCE A better understanding of the immune correlates of protection against HIV might facilitate the development of a prophylactic vaccine. Therefore, we investigated simian immunodeficiency virus (SIV) infection outcomes in rhesus macaques expressing the major histocompatibility complex class I allele Mamu-B*17 Approximately 21% of Mamu-B*17+ macaques spontaneously controlled chronic phase viremia after SIV infection, an effect that may involve CD8+ T cells targeting Mamu-B*17-restricted SIV epitopes. We vaccinated Mamu-B*17+ macaques with genes encoding immunodominant epitopes in Vif and Nef alone (group 1) or together with env (group 2). Although neither vaccine regimen prevented SIV infection, 5/8 group 2 vaccinees controlled viremia to below detection limits shortly after infection. This outcome, which was not observed in group 1, was associated with vaccine-induced, nonneutralizing Env-binding antibodies. Together, these findings suggest a limited contribution of Vif- and Nef-specific CD8+ T cells for virologic control in Mamu-B*17+ macaques and implicate anti-Env antibodies in containment of SIV infection.


Assuntos
Produtos do Gene env/imunologia , Produtos do Gene nef/imunologia , Produtos do Gene vif/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Alelos , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Macaca mulatta , Vacinas contra a SAIDS/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Carga Viral , Viremia/prevenção & controle , Replicação Viral
18.
J Virol ; 92(2)2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29093095

RESUMO

HIV vaccine development is focused on designing immunogens and delivery methods that elicit protective immunity. We evaluated a combination of adenovirus (Ad) vectors expressing HIV 1086.C (clade C) envelope glycoprotein (Env), SIV Gag p55, and human pegivirus GBV-C E2 glycoprotein. We compared replicating simian (SAd7) with nonreplicating human (Ad4) adenovirus-vectored vaccines paired with recombinant proteins in a novel prime-boost regimen in rhesus macaques, with the goal of eliciting protective immunity against SHIV challenge. In both vaccine groups, plasma and buccal Env-specific IgG, tier 1 heterologous neutralizing antibodies, and antibody-dependent cell-mediated viral inhibition were readily generated. High Env-specific T cell responses elicited in all vaccinees were significantly greater than responses targeting Gag. After three intrarectal exposures to heterologous tier 1 clade C SHIV, all 10 sham-vaccinated controls were infected, whereas 4/10 SAd7- and 3/10 Ad4-vaccinated macaques remained uninfected or maintained tightly controlled plasma viremia. Time to infection was significantly delayed in SAd7-vaccinated macaques compared to the controls. Cell-associated and plasma virus levels were significantly lower in each group of vaccinated macaques compared to controls; the lowest plasma viral burden was found in animals vaccinated with the SAd7 vectors, suggesting superior immunity conferred by the replicating simian vectors. Furthermore, higher V1V2-specific binding antibody titers correlated with viral control in the SAd7 vaccine group. Thus, recombinant Ad plus protein vaccines generated humoral and cellular immunity that was effective in either protecting from SHIV acquisition or significantly reducing viremia in animals that became infected, consequently supporting additional development of replicating Ad vectors as HIV vaccines.IMPORTANCE There is a well-acknowledged need for an effective AIDS vaccine that protects against HIV infection and limits in vivo viral replication and associated pathogenesis. Although replicating virus vectors have been advanced as HIV vaccine platforms, there have not been any direct comparisons of the replicating to the nonreplicating format. The present study directly compared the replicating SAd7 to nonreplicating Ad4 vectors in macaques and demonstrated that in the SAd7 vaccine group, the time to infection was significantly delayed compared to the control group, and V1V2 Env-specific binding antibodies correlated with viral outcomes. Viral control was significantly enhanced in vaccinated macaques compared to controls, and in infected SAd7-vaccinated macaques compared to Ad4-vaccinated macaques, suggesting that this vector may have conferred more effective immunity. Because blocking infection is so difficult with current vaccines, development of a vaccine that can limit viremia if infection occurs would be valuable. These data support further development of replicating adenovirus vectors.


Assuntos
Adenoviridae , Vetores Genéticos , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Vacinas Sintéticas , Adenoviridae/genética , Adenoviridae/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos/imunologia , Contagem de Linfócito CD4 , Linhagem Celular , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Genótipo , HIV/imunologia , Humanos , Imunidade Humoral , Imunização/métodos , Estimativa de Kaplan-Meier , Macaca mulatta , Masculino , Ligação Proteica/imunologia , Vacinas contra a SAIDS/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteínas do Envelope Viral/imunologia , Carga Viral
19.
J Gen Virol ; 98(8): 2143-2155, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28758637

RESUMO

The partial success of the RV144 trial underscores the importance of envelope-specific antibody responses for an effective HIV-1 vaccine. Oligomeric HIV-1 envelope proteins delivered with a potent adjuvant are expected to elicit strong antibody responses with broad neutralization specificity. To test this hypothesis, two SIV envelope proteins were formulated with delta inulin-based adjuvant (Advax) and used to immunize nonhuman primates. Oligomeric gp140-gp145 from SIVmac251 and SIVsmE660 was purified to homogeneity. Oligomers showed high-affinity interaction with CD4 and were highly immunogenic in rabbits, inducing Tier 2 SIV-neutralizing antibodies. The immunogenicity of an oligomeric Env DNA prime and protein boost together with Advax was evaluated in Chinese rhesus macaques. DNA administration elicited antibodies to both envelopes, and titres were markedly enhanced following homologous protein boosts via intranasal and intramuscular routes. Strong antibody responses were detected against the V1 and V2 domains of gp120. During peak immune responses, a low to moderate level of neutralizing activity was detected against Tier 1A/1B SIV isolates, with a moderate level noted against a Tier 2 isolate. Increased serum antibody affinity to SIVmac251 gp140 and generation of Env-specific memory B cells were observed in the immunized macaques. Animals were subjected to low-dose intravaginal challenge with SIVmac251 one week after the last protein boost. One out of three immunized animals was protected from infection. Although performed with a small number of macaques, this study demonstrates the utility of oligomeric envelopes formulated with Advax in eliciting broad antibody responses with the potential to provide protection against SIV transmission.


Assuntos
Anticorpos Antivirais/imunologia , DNA Viral/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , Vacinas contra a SAIDS/imunologia , Vírus da Imunodeficiência Símia/imunologia , Vacinas contra a AIDS , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Neutralizantes/imunologia , DNA Viral/administração & dosagem , DNA Viral/genética , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/administração & dosagem , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , HIV-1/genética , HIV-1/imunologia , Humanos , Imunidade Humoral , Imunização Secundária , Inulina/administração & dosagem , Macaca mulatta , Coelhos , Vacinas contra a SAIDS/administração & dosagem , Vacinas contra a SAIDS/genética , Vírus da Imunodeficiência Símia/genética , Vacinação
20.
PLoS Pathog ; 13(7): e1006529, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28732035

RESUMO

The ability to control lentivirus replication may be determined, in part, by the extent to which individual viral proteins are targeted by the immune system. Consequently, defining the antigens that elicit the most protective immune responses may facilitate the design of effective HIV-1 vaccines. Here we vaccinated four groups of rhesus macaques with a heterologous vector prime/boost/boost/boost (PBBB) regimen expressing the following simian immunodeficiency virus (SIV) genes: env, gag, vif, rev, tat, and nef (Group 1); env, vif, rev, tat, and nef (Group 2); gag, vif, rev, tat, and nef (Group 3); or vif, rev, tat, and nef (Group 4). Following repeated intrarectal challenges with a marginal dose of the neutralization-resistant SIVmac239 clone, vaccinees in Groups 1-3 became infected at similar rates compared to control animals. Unexpectedly, vaccinees in Group 4 became infected at a slower pace than the other animals, although this difference was not statistically significant. Group 1 exhibited the best post-acquisition virologic control of SIV infection, with significant reductions in both peak and chronic phase viremia. Indeed, 5/8 Group 1 vaccinees had viral loads of less than 2,000 vRNA copies/mL of plasma in the chronic phase. Vaccine regimens that did not contain gag (Group 2), env (Group 3), or both of these inserts (Group 4) were largely ineffective at decreasing viremia. Thus, vaccine-induced immune responses against both Gag and Env appeared to maximize control of immunodeficiency virus replication. Collectively, these findings are relevant for HIV-1 vaccine design as they provide additional insights into which of the lentiviral proteins might serve as the best vaccine immunogens.


Assuntos
Infecções por HIV/imunologia , HIV-1/imunologia , Reto/virologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Animais , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Infecções por HIV/virologia , HIV-1/genética , HIV-1/fisiologia , Humanos , Macaca mulatta , Reto/imunologia , Vacinas contra a SAIDS/administração & dosagem , Vacinas contra a SAIDS/genética , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Replicação Viral , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...